2 research outputs found

    Addressing the programming challenges of practical interferometric mesh based optical processors

    Full text link
    We demonstrate a novel mesh of Mach-Zehnder interferometers (MZIs) for programmable optical processors. The proposed mesh, referred to as Bokun mesh, is an architecture that merges the attributes of the prior topologies Diamond and Clements. Similar to Diamond, Bokun provides diagonal paths passing through every individual MZI enabling direct phase monitoring. However, unlike Diamond and similar to Clements, Bokun maintains a minimum optical depth leading to better scalability. Providing the monitoring option, Bokun's programming is faster improving the total energy efficiency of the processor. The performance of Bokun mesh enabled by an optimal optical depth is also more resilient to the loss and fabrication imperfections compared to architectures with longer depth such as Reck and Diamond. Employing an efficient programming scheme, the proposed architecture improves energy efficiency by 83% maintaining the same computation accuracy for weight matrix changes at 2 kHz

    On-chip Optical Phase Monitoring in Multi-Transverse-Mode Integrated Silicon-based Optical Processors

    Full text link
    We design a Multi-Transverse-Mode Optical Processor (MTMOP) on 220 nm thick Silicon Photonics exploiting the first two quasi-transverse electric modes (TE0 and TE1). The objective is to measure the optical phase, required for programming the optical processor, without use of conventional optical phase detection techniques (e.g., coherent detection). In the proposed design, we use a novel but simple building block that converts the optical phase to optical power. Mode TE0 carries the main optical signal while mode TE1 is for programming purposes. The MTMOP operation relies on the fact that the group velocity of TE0 and TE1 propagating through a mode-sensitive phase shifter are different. An unbalanced Mach-Zehnder interferometer (MZI) consists of a mode-sensitive and mode-insensitive phase shifters in the two arms. We set the bias of the phase shifters so that TE0 propagating in the two arms constructively interfere while this will not be the case for TE1. Hence, we detect the phase shift applied to TE0 by measuring the variation in the optical power of TE1. To the best of our knowledge, this design is the first attempt towards realizing a programmable optical processor with fully integrated programming unit exploiting multimode silicon photonics
    corecore